ES 314 Advanced Programming, Modeling and Simulation Fall 2009
Mid-term # 2, take-home test, Due: Nov 23 by 12 noon
create a zip file containing your programs with names indicated in the problems and name the zip file es314<your_last_name> and e-mail it to cs351submission@gmail.com.
Your code should follow the syntax of Matlab exactly and should take the parameters as specified in the problem statement. Any additional comments can be included in a README file. For example, if your code works in some special cases, you can indicate such examples in this file.
1) Write a program count that takes as input a string and computes the following: (a) length of the string, (b) the number of distinct letters, (c) the number of occurrences of each letter in the string, and (d) the number of occurrences of adjacent pairs of characters.
Example:
>> count('this_is_a_stringathis_is_astring');

Total number of letters = 32

Number of distinct letters = 9

count(t)=4

count(h)=2

count(i)=6

count(s)=6

count(_)=5

count(a)=3

count(r)=2

count(n)=2

count(g)=2

count(th)=2

count(hi)=2

count(is)=4

count(s_)=4

count(_i)=2

count(_a)=2

count(a_)=1

count(_s)=1

count(st)=2

count(tr)=2

count(ri)=2

count(in)=2

count(ng)=2

count(ga)=1

count(at)=1

count(as)=1

 Note: The text can contain any non-blank character.
2) Write a program multiply that takes as input a number x with essentially unlimited number of digits (the number is represented as a string) and a normal integer y (assume y has no more than 5 digits) and returns the product x * y as a string.

Example: multiply(‘278372008913718738172328372837’, 3541) should return:

‘985715283563478051868214768215817’

Note that the first argument is a string, the second argument is an integer and the result is a string.

Suggested approach: read the string and break it into groups of 4 digits and store them in an array starting with lowest digits. Thus, the above input will be stored in the array as: a = [2837, 2837, 7232, …]. Initialized carry to 0. Then, write a loop in which you compute a(j) * y + carry which will be a 8 digit number z. compute mod(z, 1000). This will be b(j). floor(z/1000) will become carry for the next iteration. Finally, you should convert b array into a string.
3) In mid-term 1, you worked on a problem involving a Latin square which is an n by n matrix that has exactly one occurrence of every number from 1 to n in every row, and in every column. Shown below is an example of a Latin square:
[image: image1.png]

Two arrays A and B both of order n is said to form an orthogonal Latin Square pair if both A and B are Latin squares, and the pairs (a[i,j], b[i,j]) are all distinct. The following is an example of orthogonal Latin squares:

 1 2 3 4 5 1 2 3 4 5

 2 3 4 5 1 3 4 5 1 2

 3 4 5 1 2 5 1 2 3 4

 4 5 1 2 3 2 3 4 5 1

 5 1 2 3 4 4 5 1 2 3

Note that there are 25 pairs you can form but taking an element from A and the corresponding element (same row, same column element) from B. All such pairs must be distinct.

Write a function test_orthogoal_latin_square in Matlab that takes two n by n arrays A and B as input and returns true (false) if the pair (A, B) forms an orthogonal Latin square pair. You can assume that the inputs are square matrices of integers of the same order.
3) Let C be a cell array whose members can be cell arrays or numbers. Example: {{2, {4, 5, 6}, {{7, 8}, 1, 11}, 12}, {15, {21, 1}}}. Note that cell arrays can be arbitrarily deep in containing other cell arrays. You are to write a program get_numbers that takes such a cell array C as input and returns a vector containing all the numbers in the cell array (in the same order).

Example:

>> get_numbers({{2, {4, 5, 6}, {{7, 8}, 1, 11}, 12}, {15, {21, 1}}})

ans =

 2 4 5 6 7 8 1 11 12 15 21 1

Hint: The best way to solve this problem is to use recursion.

5) A particle (of negligible size) starts at the point (10,0) on the X axis, and randomly makes a jump of unit distance after every second. Thus, for example, after one second, it will be in position (9,0) or (11, 0) with probability 0.5 each. It keeps making these jumps until it reaches (25,0) or (0,0) at which point it stops. Simulate the movement of this particle and repeat the simulation 100000 times and determine the answers to the following questions: (a) what the probability that it will end in (25,0) rather than (0,0)? (b) what is the expected time before it reaches one of its destinations?

When your program is run, it should print these two results. There is no input to this program.
