1) For each of the following assignment statements state whether or not it is correct. If correct, specify what value it would produce. If it is incorrect, just state "error". Assume $\mathrm{a}=2, \mathrm{~b}=90, \mathrm{c}=-1$, $\mathrm{ma}=[12 ; 23 ; 34]$ and $\mathrm{mb}=1: 4: 10$.
A) $\mathrm{mb}+[1,2]$
error
B) $m a>2$

00
$0 \quad 1$
$1 \quad 1$
C) $[\mathrm{a},[\mathrm{b}, \mathrm{c}]]=90$
[0, 1, 0]
D) $a([a]+1)=5$
[2, 0, 5]
E) $m b==m b-1$
[0, 0, 0]
F) $\mathrm{b}-23=\mathrm{c}+10$
error
G) $a([2: 3: 6])=4$
$[2,4,0,0,4]$
H) $[\mathrm{a}, \mathrm{b}, \mathrm{c}]$ * $[\mathrm{b}, \mathrm{c}, \mathrm{a}]$
error
2) Assume that the following statements have been executed:

$$
\begin{aligned}
& \gg x=\text { 'hello'; } \\
& \gg y=\text { 'there'; } \\
& \gg \mathrm{z}=[\mathrm{x}, \mathrm{y}] ;
\end{aligned}
$$

State the output that is produced by each of the following.

A: $x==1: 5$
[0, 0, 0, 0, 0]
B: length(z)
10
C: strrep(z,'ot',")
hellhere
D: $\mathrm{z}\left(\mathrm{z}==\right.$ ' $^{\prime}$)
eee
E: $\mathrm{z}([1: 3,7: 9])$
hellher
3) Write a one-line statement in Matlab to perform the following.
A) compute θ in degrees for which $\sin (\theta)=0.15$

180*asin(0.15)/pi
B) create a vector of length 100 all of whose entries are 5 .

5 * ones (1, 100)
C) test if a vector A has at least one non-zero entry.
any ($\mathrm{A} \sim=0$)
D) determine if the first and the second rows of a matrix A are identical.
all(A(1:) ==A(2:))
E) generate a random real number between 1 and 3 .
$1+2 *$ rand ()
4) The following sequence of commands is typed. Write the output that is printed after each of the commands. (The operations are cumulative.)

```
>> v=1:3
[1, 2, 3]
>> u=[v;v.^2;1+v]
1 2 3
1 4 9
2 3 4
>> sum(u(1,:).*u(3,:))
20
>> u([3,1],1)'
[2, 1]
```

5) Name the function to perform each of the following operations:
(a) to make the scale on the x and y-axis equal.
```
axis('equal')
```

(b) to copy an image 'imagei.jpg' to an array A.

```
imread(`image1.jpg')
```

(c) to find the inverse of a matrix B.

$$
B^{\wedge}(-1)
$$

(d) to get the integer part of a real number.
floor
(e) to concatenate two strings s1 and s2.

```
strcat(s1, s2)
```

6) Explain the following terms:
(a) What is numerical indexing? Give an example.

If A is an array, any set of array elements can be accessed (or modified) using a vector of indices v using the format A(v). This is called numerical indexing.

```
Example: >> A = [1, 4, 9, 8]
> A([llllll
ans =
[11 4 1 1 9]
```

(b) What is logical indexing? Give an example.

```
If A is an array, (some of) the array elements can be
accessed (or modified)using a Boolean vector v of the size
equal to the size of the array. This is called numerical
indexing.
Example: >> A = [1, 4, 9, 8]
>> A([false false false true])
ans =
```

[8]
(c) What is call by value?

Let f be a function of one variable say x. If the function f is called with input variable y, what is passed when the code for f is run is a copy of variable y. This means, even if variable x is modified in f, this change will have no effect on y. In contrast, call by reference would result in actually using the memory location where y is stored as the variable x so any change made to x in f will change the variable y.
(d) State the difference between a cell array and an ordinary array. Give an example where cell array is needed.

A cell array is an array of pointers - in contrast to ordinary array that hold data directly. A collection of strings can't be stored in ordinary array since they get concatenated to form a single string. A cell array can be (should be) used for this purpose.

Open book section. Create a separate file containing the function or script for problem, create a zip file containing your solutions and name it <last_name>.zip and submit to through your moodle account.

1) Start with a positive integer n, and generate successive numbers by computing the sum of squares of the previous number. For example, starting with 34 , we get $3^{2}+4^{2}=25$, next we get $2^{2}+5^{2}=29$, then $2^{2}+9^{2}=$ $25=85$ etc. Eventually the sequence repeats: 25, 29, 85, 89, 145, 42, 20, 4, 16, 37, 58, 89

You are to write a function square_seq that takes as input the starting number (25 in the above example) and produce as output a vector that contains all the numbers generated by the above procedure and stop with the first repeating number.

Another example:

```
>> square_seq(15)
ans =
4 16
```

Solution:

```
function out = square_seq(n)
out = [n];
next = sumsq(n);
while ~any(next==out)
    out = [out, next];
    next = sumsq(next);
end
out = [out, next];
function sum = sumsq(n)
sum = 0;
while ~(n==0)
    dig = mod(n,10);
    n = floor(n/10);
    sum = sum + dig*dig;
end;
```

2) Write a script draw that draws the following geometric figures using plot function: the circle of radius 2 with center (3,4), the line L through (0,0) and $(3,4)$ and the tangent to the circle at the point of intersection of the circle and line L. (Note that there are two points of intersection; choose the point closer to origin.)

Hint: you can find the intersection point by solving a quadratic equation. Use Matlab to solve the equation.
(submitted by Fabian)

```
r = 2;
center = [3,4];
theta = linspace(0,2*pi,100);
x = r*cos(theta)+3;
y = r*sin(theta)+4;
%line L through (0,0) and center
x1 = linspace(0,5.5,100);
L = (center (2)/center (1))*x1;
%tangent line to circle at intersection closest to origin.
theta1 = atan(4/3);
xInt = r*cos(theta1+pi)+3;
yInt = r*sin(theta1+pi)+4;
x2=linspace (0,5.5,100);
tan line = -1*(xInt-center(1))/(yInt-center(2))*(x2-
xIn可)+yInt;
plot(x,y,x1,L,x2,tan_line,3,4,'-o');
axis('equal');
```

3) A Latin square of order k is a k by k matrix in which the numbers from t to k occurs exactly once in each row and exactly once in each column. Further, all the numbers from 1 to k occur exactly once along both diagonals.
Write a function (named latin) in Matlab that tests if a given matrix is a Latin square.
$\gg A$
$A=$

1	2	3	4
3	4	1	2
4	3	2	1
2	1	4	3

```
ans =
```

1

```
function out = latin(A)
% tests if A is a Latin square
% assume A is a square matrix
[n, m] = size(A);
if ~(n== m)
    out = 0; return;
end;
for j = 1:n
    if ~(sort(A(:,j)')== 1:n) out = 0; return;
    end;
end;
for j = 1:n
    if ~(sort(A(j,:))==1:n)
        out = 0; return;
    end;
end;
vec = [];
for j = 1:n
    vec = [vec,A(j,j)]
end;
if ~(sort(vec) == 1:n)
    out = 0; return;
end;
vec = [];
for j = 1:n
    vec = [vec, A(n-j+1,j)];
end;
if ~(sort(vec) == 1:n)
    out = 0; return;
end;
out = 1;
```

4) Write a function move in Matlab that takes as input two vectors v and u, where v is a vector of n integers and u is a permutation of $1: n$, and return a vector by moving the elements of v according to the permutation.
Specifically, $\mathrm{v}(1)$ should move to position $\mathrm{u}(1), \mathrm{v}(2)$ should move to position $\mathrm{u}(2)$ etc.
function out $=$ move (u, v) out(u) = v
