ES 314 Advanced Programming, Modeling and Simulation

Final Exam Fall 10
Due: Saturday 10 AM

1. Write a function Problem1 to simulate a queue that is served by a single server. Initially the queue is empty. A total of N people need to be served (such as in a super-market check-out counter). Assume that the inter-arrival time of successive clients is a random variable that is uniformly distributed in the interval [0, x] for some real number x. The clients form a queue and when the server is free, the person at the head of the queue is chosen to get the service and leaves the queue. The time to serve each client is a random variable that is uniformly distributed in the interval [0, y] for some real number y. The goal is to find the expected (average) waiting time for the clients. Write a program to simulate this event m times and report the waiting time (averaged over all the clients and over all the m iterations). The definition of the waiting time of a client is the difference between the time at which the client arrives and the time at which he/she starts receiving service. Write a function Problem1 to simulate the event that takes as input the parameters m, N, x and y. Thus, when Problem1 is run with inputs m, N, x and y, the output is the average waiting time.
Hint: generate an array A of size N that represents the arrival times of the N clients as follows: to generate the arrival time of the (i+1)-th client, generate a random real number between 0 and x, and add it to the arrival time for the i-th client. Generate another array B of size N that represents the service time of the clients, i.e., B(j) represents the time it takes to service j. Finally, let T(j) represent the time at which j starts receiving service. Write an expression for T(j) by noting that j gets the service as soon as j-1 completes the service or as soon as j arrives, whichever comes later.

2. Given as input a matrix of 0’s and 1’s, your program should produce as output the largest square sub-matrix all of whose entries are 0. Your program should also output the earliest row number and the column number where such a k by k sub-matrix occurs.
Example:
>> A =

 0 0 1 1 1 0 0 0 1 1

 0 1 0 0 0 1 0 0 1 0

 0 1 0 0 0 0 0 0 1 0

 1 1 0 0 0 1 0 0 1 0

 0 1 0 0 1 1 0 0 1 0

 1 0 1 0 0 0 1 0 0 1
>> [r, c, k] = Problem2(A)

r =

 2

c =

 3

k =

 3
3. Given a cell array C such as {{1, 3}, {6, {11, 5}, 8}, 2} in which no number appears more than once, write a function problem3 that takes C as input and outputs two vectors, one of which lists all the numbers that appear in C (in the order in which they appear) and a second vector in which the depth of occurrence of each number is computed. Depth is defined as follows: if a number appears in C, its depth is 1 (e.g. the depth of 2 in C above is 1), depth of a number inside a cell array in C is 2, depth of a number inside a cell array inside a cell array in C is 3 etc. For example, the depth of 1, 3, 6 and 8 are 2, the depth of 11 and 5 is 3, etc.
Sample input/output:

[image: image1.png]> €= {{ 1, 3}, {6, (11, S}, 8}, 2}
>> [a,b] = Problemd(C, 1)

Note the second parameter in Problem3 function (which is set to 1 in the above call) is needed for recursion. In your recursive calls to each member of the cell array, this parameter gets increased.

4. Write a program, Problem4, to implement the following graphical user interface. Each time you press the “Yes” or “No” buttons, the corresponding count increases. Thus in the figure shown below, YES has been pressed 10 times, NO has been pressed 7 times.

[image: image2.png]10

5) A magic square is a N by N matrix containing every number from 1 to N2 exactly once so that the sum of every row, every column and the two diagonals are the same. Write a function Problem5 that takes as input a square matrix A and outputs 1 (0) if A is a (is not a) magic square.
A =

 35 1 6 26 19 24

 3 32 7 21 23 25

 31 9 2 22 27 20

 8 28 33 17 10 15

 30 5 34 12 14 16

 4 36 29 13 18 11

>> Problem5(A)

ans =

 1
