CES 490d Computer Design and Architecture Fall 2004
Final Project

Due: December 6, 2004
Design a combinational circuit that takes as input two K bit integers X and Y and outputs 1 (0) if X * Y has 1 (0) as the leading bit (assuming that the output is written as a 2K bit number). The input numbers are unsigned integers. Thus, for example, if the input is X = 10110110 and Y = 10110110, the output is 1. This is because X * Y (in binary) is 1000000101100100 (when written as a 16 bit integer).
 You are to design a circuit that takes as input two 32-bit (unsigned) integers and output 1 (0) if their product has 1 (0) as the most-significant bit when written as a 64 bit integer. Your goal is to minimize the average number of clock cycles to compute the result.

 One approach to this problem is as follows:

 Step 0: Let r = 4.

 Step 1: Let the leading r bits of X be X1 and Y1. If both X1 and Y1 are a string of 1’s (i.e. it is of the form 111 … 1), then output 1 and halt else continue: compute Z1 = X1 * Y1 as a 2K bit integer using a K-bit serial multiplier. If r = 32 then report the result based on the leading bit of Z1.

 Step 2: We know at this step that least one of X1 or Y1 is not a string of 1’s. If X1 is a string of 1’s, then swap X1 and Y1. Now, we know that X1 is not a string of 1’s. Let X2 = X1 + 1. (Design a simple hardware unit to add 1 to a number.) Compute Z2 = X2 * Y1 as a 2K-bit integer using a K-bit serial multiplier.

 Step 3: If Z1 and Z2 have the same leading bit, then output this bit and halt. Else continue.

 Step 4: Set r = r + 1 and go to step 1.

 Instead of designing the solution in hardware, we will do a software simulation of the solution in C (or C++). The implementation details are presented below: Assume that the inputs are two 32-bit unsigned integers.

· Write a function serial_mult that takes two K-bit integers as input and computes their product.

· Write a function to increment a K-bit integer.

· Write a function to compare two K-bit integers. (This will be helpful to check if the number is a string of 1’s.)

 The only instructions you can use in these functions are bit-level operations. Your program should keep count of the number of bit-level operations (as a global variable).

 Write a main program that calls these functions to implement the algorithm described above.

 Testing: Test your program for randomly chosen inputs and verify that the program’s outputs are correct.

 Performance analysis: This is an important part of this project. Please follow the instructions carefully.

For a given input pair X, Y, First compute the number of bit-level operations performed by a 32-bit serial multiplier. You can find this by sending the inputs X and Y directly to the 32-bit serial multiplier. Then, run the above algorithm on the same pair X and Y and record the number of bit-level operations performed. Also check that the results obtained are the same in both cases. Repeat this experiment for 1000 randomly chosen test cases and report the average number of bit-level operations performed in both cases. The final result will be just two numbers – one for the average number of bit-level operations performed by the 32-bit serial multiplier and the other is the algorithm described above.

Submission: Your submission should include a brief description of how you wrote the program, source code, some test cases, the data collected for the performance analysis (you need not report the outcome of all the 1000 test cases, just report 50 of them), and the final averages.

