CS 351 Computer Architecture Fall 2009
Mid-Semester # 2, November 16, 2009, closed book section
Correct answer to multiple choice questions is in bold.
1) In order to add the two FP numbers A = 0x 010000AB and B = 0x 1a11abdf, what arithmetic operation is performed by the small ALU?

 (a) subtract the exponent of one operand from that of the other
 (b) compare the sign bits of the two operands
 (c) normalize the smaller operand
 (d) add the significands of the two operands

 (e) subtract127 from the exponents of the operands

2) Write a single MIPS instruction to load the FP stored in memory location whose address is in register $t0.

 lwc1 $f0, 0 ($t0)
3) What is the differences between the unoptimized serial multiplication circuit and the optimized serial multiplication circuit?
 (a) the former uses a ripple-carry adder while the latter uses carry-save adder

 (b) the former uses a ripple-carry adder while the latter uses carry-lookahead adder

 (c) the former uses a 64-bit adder while the latter uses a 32-bit adder

 (d) the former performs 64 additions while the latter performs 32 additions

 (e) the latter uses a control unit while the former does not.

 4) Consider a 4-bit number adder circuit (in 2’s complement) for which the inputs are 0110 and 1011. Show the outputs (result as well as overflow and zero output bits).

 Output = 0001 overflow = 0 (no overflow)
5) Let the exponents of two FP real numbers A and B be: A = 10110100 and B = 01101101. What is the exponent of A*B?
 1010 0010

6) The inputs to an 4-bit (3,2)-carry save adder are 1011, 1010 and 0110. What are the outputs? (Note that the outputs are 5-bits long.)
 s = 00111, c = 11100
7) In the 5-stage MIPS pipeline with stages as listed below, which stages are required to be performed for each of the following operations:
Stages: 1) instruction fetch 2) inst decode and fetch from registers 3) ALU operations 4) access operand from memory and 5) write result to register

 a) sll ____1, 2, 3, 5_______________________________

 b) j ____ 1, 2, 5______________________________________

 c) addi _____1, 2, 3, 5____________________________________

 d) sw ______1, 2, 3, 4_____________________________________
8) Write -7 as a single-precision FP number. (Write the 32-bit representation in hexadecimal.)
 1100 0000 1110 0000 0000 0000 0000 0000 = 0x a0e000000
9) Write a one-line statement in MIPS to add the two real numbers A and B stored in FP registers $f0 and $f1 and store the result in $f2.
 add.s $f2, $f1, $f0
10) What is the reason for using “round to even” rule in rounding the result of a FP operation?
 (a) to reduce the relative error in the result

 (b) to make the result of FP operation more predictable

 (c) to reduce the cumulative error over a sequence of FP operations

 (d) to avoid introduction of denormalized FP numbers

 (e) to reduce the possibility of FP overflow or underflow.
CS 351 Computer Architecture Fall 09

Mid-semester Test # 2

Section B – open book section
1. Write the single-precision FP representation of the real number 235 + 28. What is the relative error in this representation?

(a) x = 235 + 28 = 235 (1 + 2-27) so, the exponent is 35 so 162 in excess 127 notation, and the significand is 0 since it has 1 in the 27-th bit after the decimal point. Thus the single-precision FP representation of x is:

 y = 0x 51000000

The relative error is r = | x – y | / |x|. Since y = 235, r = 1/(1 + 227) ~ 2-27
 (b) 3.2 = 2 x (1 + 0.6) so exponent is 2 which is 129 in
 excess 127 notation.

 The 32-bit representation of significand 0.6 is
 10011001100110011001100.
 In hex, it is 0x 404ccccc

 The relative error is the same as that for 0.1 which was
 calculated in class as approximately 9 x 10-7.

2. Write a program in MIPS to multiply a FP number by two and store the result in $t1. Assume that the number in $t0 is normalized. You should not use any FP instructions. First describe your solution informally; then present the MIPS code.
Idea: we just need to increment the exponent field of the number stored in register $t0 which is equivalent to adding 223 to $t0. One way to do this is to store in register $t1 by first storing 1 in register $t1, then shifting left by 23. Then add $t0 and $t1 and store the result in $t0.

addi $t1, $zero, 1

sll $t1, $t1, 23

add $t0, $t1, $t0

3. How many real numbers in the interval [1, 4] can be exactly represented as single-precision FP numbers?
There are 1 + 224 such numbers. This is seen from the following fact: all the real numbers in [1,2) that can be exactly represented as FP number have exponent field 127, sign bit = 0 and the remaining 23 bits that can be filled in 223 different ways. Similarly there are 223 numbers in the interval [3,4). Finally, adding one more for number 4 gives the total number as 1 + 224.
The set S of errors associated with real numbers in the interval [1,4] does not have a maximum element, but the least-upper-bound for set S is 2-24.

4. What is the result of adding the two FP numbers 0x AB00005B and 0x A9A9000B? Use two extra-bits while performing the addition.
The exponent for the second number is 3 less than the exponent of the first number. So, the significand of the second is shifted right by 3 bits and the addition is performed. The resulting addition, along with the hidden bit and two extra bits is shown:

 1 0000 0000 0000 0000 1011 011 00

 0 0001 0101 0010 0000 0000 000 10

 1 0001 1010 0100 0000 1011 100 10
Rounding does not change the 23 bit significands so the final result is 0x AB15205c.
5. Write a MIPS program (that includes the data segment and the code showing I/O operations) to solve the following problem: given as input a real number r, compute r12. (Assume that both the input and the output are single precision FP numbers.)
Outline: Read r into a FP register $f0, and also into $f10. Load n into register $t0. By decrementing $t0 successfully until $t0 reaches 0, we repeat the computation $f10 <- $f10 * $f0. At this point, $f10 contains r^n. Now we can print it out. The code is shown below.
6. Shown below is the block diagram of the optimized serial multiplier:

[image: image2.png]Multiplicand

32 bits
\
\ /
32-bit ALU -
R
Product Shift rlght
Write

64 bits

What are the outputs when the inputs are 0101 and 1011? Show all the steps in the computation and exhibit the contents of the registers.
Output is shown below:

Multiplicand 0101, multiplier: 1011

 Output register:

Step 0 0000 1011

Step 1 0101 1011 (addition of 0000 and 0101)

 0010 1101 (shift right)

Step 2 0111 1101 (addition of 0010 and 0101)
 0011 1110 (shift right)
Step 3 0011 1110 (no write of the result)

 0001 1111 (shift right)

Step 4 0110 1111 (addition of 0001 and 0101)

 0011 0111 (shift right)

This is the final result, which is 55 = 5 x 11

7. Suppose we want to add a new instruction lui $r1, k to the -MIPS design of Figure 4.24. Is it possible to do this without adding any new data path wires? How should the control signals (RegWrite, ALUSrc, MemRead, MemWritem ALUop0, ALUOp1, etc.) be set for this instruction?
One way to extend the micro-MIPS design to include lui instruction is as follows:
 The instruction lui $t0, 0x YYYY has 16-bit immediate operand. The result of executing this instruction is to load YYYY0000 into register $t0. The 16-bit immediate operand needs to be extended to 32-bits by adding 16 zero bits to the right. The mux that selects between sign-extended 16-bit immediate operand and the second output from register file will now select between three options – the third one being the 32-bit generated by adding 16 low zero bits. ALU will perform addition by setting the first operand to be 0.
PAGE
1

[image: image1]