Lec 17

April 8

Topics:

• binary Trees
• expression trees
• Binary Search Trees

(Chapter 5 of text)
Trees

- Linear access time of linked lists is prohibitive
 - Heap can’t support search in $O(\log N)$ time. (takes $O(N)$ time to search in the worst-case.)
 - Hashing has worst-case performance of $O(N)$.
 - Does there exist any simple data structure for which the running time of dictionary operations (search, insert, delete) is $O(\log N)$?

- Trees
 - Basic concepts
 - Tree traversal
 - Binary tree
 - Binary search tree and its operations
Trees

- A tree is a collection of nodes
 - The collection can be empty
 - (recursive definition) If not empty, a tree consists of a distinguished node \(r \) (the root), and zero or more nonempty subtrees \(T_1, T_2, \ldots, T_k \), each of whose roots are connected by a directed edge from \(r \)

![Generic tree](image)
Basic terms

- **Child and Parent**
 - Every node except the root has one parent
 - A node can have an zero or more children

- **Leaves**
 - Leaves are nodes with no children

- **Sibling**
 - Nodes with the same parent
More Terms

- **Path**
 - A sequence of edges

- **Length of a path**
 - number of edges on the path

- **Depth of a node**
 - length of the unique path from the root to that node
More Terms

- **Height of a node**
 - length of the longest path from that node to a leaf
 - all leaves are at height 0

- The height of a tree = the height of the root
 = the depth of the deepest leaf

- **Ancestor and descendant**
 - If there is a path from \(n_1 \) to \(n_2 \)
 - \(n_1 \) is an ancestor of \(n_2 \), \(n_2 \) is a descendant of \(n_1 \)
 - *Proper ancestor and proper descendant*
Example: UNIX Directory

Figure 4.5 UNIX directory
Example: Expression Trees

- Leaves are operands (constants or variables)
- The internal nodes contain operators
- Will not be a binary tree if some operators are not binary (e.g. unary minus)

Figure 4.14 Expression tree for \((a + b \times c) + ((d \times e + f) \times g)\)
• Given an expression, build the tree
• Compilers build expression trees when parsing an expression that occurs in a program
• Applications:
 • Common subexpression elimination.
Expression to expression Tree algorithm

Problem: Given an expression, build the tree.

Solution: recall the stack based algorithm for converting infix to postfix expression.

From postfix expression E, we can build an expression tree T.

Node structure

```java
class Tree {
    char key;
    Tree* lchild, rchild;
    ...
}
```
Expression to expression Tree algorithm

Node structure

```
Constructor:

Tree(char ch, Tree* lft, Tree* rgt) {
    key = ch;
    lchild = lft;
    rchild = rgt;
}
```

Operand: leaf node
Operator: internal node
Expression to expression Tree algorithm

Problem: Given an expression, build the tree.

Input: Postfix expression E, output: Expression tree T

initialize stack S;
for j = 0 to E.size – 1 do
 if (E[j] is an operand) {
 Tree t = new Tree(E[j]);
 S.push(t*);
 } else {
 tree* t1 = S.pop();
 tree* t2 = S.pop();
 Tree t = new(E[j], t1, t2);
 S.push(t*);
 }

At the end, stack contains a single tree pointer, which is the pointer to the expression tree.
Expression to expression Tree algorithm

Example: $a \ b + c \ *$

Very similar to prefix expression evaluation algorithm
Tree Traversal

- used to print out the data in a tree in a certain order

- Pre-order traversal
 - Print the data at the root
 - Recursively print out all data in the left subtree
 - Recursively print out all data in the right subtree
Preorder, Postorder and Inorder

- Preorder traversal
 - node, left, right
 - prefix expression
 - \(+a*bc*++*defg \)

*Figure 4.14 Expression tree for \((a + b * c) + ((d * e + f) * g)\)*
Preorder, Postorder and Inorder

- **Postorder traversal**
 - left, right, node
 - postfix expression
 - abc*+de*f+g*+

- **Inorder traversal**
 - left, node, right
 - infix expression
 - a+b\cdot c+d\cdot e+f\cdot g

![Expression tree](image)

Figure 4.14 Expression tree for \((a + b \cdot c) + ((d \cdot e + f) \cdot g)\)
Example: Unix Directory Traversal

```
/usr
  mark
    book
      ch1.r
      ch2.r
      ch3.r
    course
      cop3530
        fall98
          syl.r
          spr99
            syl.r
          sum99
            syl.r
        junk
        alex
        bill
      work
    course
      cop3212
        fall98
          grades
          prog1.r
          prog2.r
        fall99
          prog2.r
          prog1.r
          grades

/usr
  ch1.r  3
  ch2.r  2
  ch3.r  4
  book  10
  syl.r  1
  fall98  2
  spr99  6
  syl.r  5
  sum99  3
  cop3530  12
  course  13
  junk  6
  mark  30
  junk  8
  alex  9
  work  1
  grades  3
  prog1.r  4
  prog2.r  1
  fall98  9
  prog2.r  2
  prog1.r  7
  grades  9
  fall99  19
  cop3212  29
  course  30
  bill  32
  /usr  72
```
Preorder, Postorder and Inorder Pseudo Code

Algorithm Preorder(x)
Input: x is the root of a subtree.
1. if $x \neq$ NULL
2. then output key(x);
3. Preorder(left(x));
4. Preorder(right(x));

Algorithm Postorder(x)
Input: x is the root of a subtree.
1. if $x \neq$ NULL
2. then Postorder(left(x));
3. Postorder(right(x));
4. output key(x);

Algorithm Inorder(x)
Input: x is the root of a subtree.
1. if $x \neq$ NULL
2. then Inorder(left(x));
3. output key(x);
4. Inorder(right(x));
Binary Trees

- A tree in which no node can have more than two children

- The depth of an “average” binary tree is considerably smaller than N, even though in the worst case, the depth can be as large as $N - 1$.
Node Struct of Binary Tree

- Possible operations on the Binary Tree ADT
 - Parent, left_child, right_child, sibling, root, etc

- Implementation
 - Because a binary tree has at most two children, we can keep direct pointers to them

```c
struct BinaryNode
{
    Object    element;    // The data in the node
    BinaryNode *left;     // Left child
    BinaryNode *right;    // Right child
};
```
Convert a Generic Tree to a Binary Tree

Figure 4.2 A tree

Figure 4.4 First child/next sibling representation of the tree shown in Figure 4.2
Binary Search Trees (BST)

• A data structure for efficient searching, insertion and deletion (dictionary operations)
 • All operations in worst-case $O(\log n)$ time

• Binary search tree property
 • For every node x:
 • All the keys in its left subtree are smaller than the key value in x
 • All the keys in its right subtree are larger than the key value in x
Binary Search Trees

Example:

Tree height = 4

Key requirement of a BST: all the keys in a BST are distinct, no duplication
Binary Search Trees

The same set of keys may have different BSTs

- Average depth of a node is $O(\log N)$
- Maximum depth of a node is $O(N)$

($N =$ the number of nodes in the tree)
Searching BST

Example: Suppose T is the tree being searched:
- If we are searching for 15, then we are done.
- If we are searching for a key < 15, then we should search in the left subtree.
- If we are searching for a key > 15, then we should search in the right subtree.
Example: Search for 9 ...

Search for 9:

1. compare 9:15 (the root), go to left subtree;
2. compare 9:6, go to right subtree;
3. compare 9:7, go to right subtree;
4. compare 9:13, go to left subtree;
5. compare 9:9, found it!
Search (Find)

- **Find X**: return a pointer to the node that has key X, or NULL if there is no such node

```cpp
template <class Comparable>
BinaryNode<Comparable> *
BinarySearchTree<Comparable>::
find( const Comparable & x, BinaryNode<Comparable> * t ) const
{
    if( t == NULL )
        return NULL;
    else if( x < t->element )
        return find( x, t->left );
    else if( t->element < x )
        return find( x, t->right );
    else
        return t; // Match
}
```

- **Time complexity**: $O(\text{height of the tree})$
Inorder Traversal of BST

- Inorder traversal of BST prints out all the keys in sorted order

Inorder: 2, 3, 4, 6, 7, 9, 13, 15, 17, 18, 20
findMin/ findMax

- **Goal:** return the node containing the smallest (largest) key in the tree
- **Algorithm:** Start at the root and go left (right) as long as there is a left (right) child. The stopping point is the smallest (largest) element

```cpp
template <class Comparable>
BinaryNode<Comparable> *
BinarySearchTree<Comparable>::findMin( BinaryNode<Comparable> *t ) const
{
    if( t == NULL )
        return NULL;
    if( t->left == NULL )
        return t;
    return findMin( t->left );
}
```

- **Time complexity = O(height of the tree)**
Insertion

To insert (X):

- Proceed down the tree as you would for search.
- If x is found, do nothing (or update some secondary record)
- Otherwise, insert X at the last spot on the path traversed

- Time complexity = $O(\text{height of the tree})$
Another example of insertion

Example: insert(11). Show the path taken and the position at which 11 is inserted.

Note: There is a unique place where a new key can be inserted.
Insert is a recursive (helper) function that takes a pointer to a node and inserts the key in the subtree rooted at that node.

```c
/**
 * Internal method to insert into a subtree.
 * x is the item to insert.
 * t is the node that roots the subtree.
 * Set the new root of the subtree.
 */
void insert( const Comparable & x, BinaryNode * & t )
{
    if( t == NULL )
        t = new BinaryNode( x, NULL, NULL );
    else if( x < t->element )
        insert( x, t->left );
    else if( t->element < x )
        insert( x, t->right );
    else // Duplicate; do nothing
}
Deletion under Different Cases

- **Case 1**: the node is a leaf
  - Delete it immediately
- **Case 2**: the node has one child
  - Adjust a pointer from the parent to bypass that node

Figure 4.24 Deletion of a node (4) with one child, before and after
Deletion Case 3

- Case 3: the node has 2 children
  - Replace the key of that node with the minimum element at the right subtree
  - Delete that minimum element
    - Has either no child or only right child because if it has a left child, that left child would be smaller and would have been chosen. So invoke case 1 or 2.

- Time complexity = $O(\text{height of the tree})$
Code for Deletion

Code for findMin:

```cpp
/**
 * Internal method to find the smallest item in a subtree t.
 * Return node containing the smallest item.
 */
BinaryNode * findMin(BinaryNode *t) const
{
 if(t == NULL)
 return NULL;
 if(t->left == NULL)
 return t;
 return findMin(t->left);
}
```
/**
 * Internal method to remove from a subtree.
 * x is the item to remove.
 * t is the node that roots the subtree.
 * Set the new root of the subtree.
 */
void remove( const Comparable & x, BinaryNode * & t )
{
    if( t == NULL )
        return; // Item not found; do nothing
    if( x < t->element )
        remove( x, t->left );
    else if( t->element < x )
        remove( x, t->right );
    else if( t->left != NULL && t->right != NULL ) // Two children
    {
        t->element = findMin( t->right )->element;
        remove( t->element, t->right );
    }
    else
    {
        BinaryNode *oldNode = t;
        t = ( t->left != NULL ) ? t->left : t->right;
        delete oldNode;
    }
}
Summary of BST

- all the dictionary operations (search, insert and delete) as well as deleteMin, deleteMax etc. can be performed in $O(h)$ time where $h$ is the height of a binary search tree.

**Good news:**
- $h$ is on average $O(\log n)$ (if the keys are inserted in a random order).
- But the worst-case is $O(n)$

**Bad news:**
- some natural order of insertions (sorted in ascending or descending order) lead to $O(n)$ height. (tree keeps growing along one path instead of spreading out.)

**Solution:**
- enforce some condition on the structure that keeps the tree from growing unevenly.