
Data Compression

• Reduce the size of data.
� Reduces storage space and hence storage

cost.
• Compression ratio = original data size /

compressed data sizecompressed data size

� Reduces time to transmit and retrieve data.

� Reduces the storage requirement.
(particularly useful in embedded systems,
network bridges, routers etc.)

Adapted from Sahni’s Data Structures and Applications slides.

Lossless And Lossy Compression

• compressedData = compress(originalData)

• decompressedData =

decompress(compressedData)

• When originalData = decompressedData, the • When originalData = decompressedData, the
compression is lossless.

• When originalData != decompressedData, the
compression is lossy.

Lossless And Lossy Compression

• Lossy compressors generally obtain much
higher compression ratios than do lossless
compressors.

� Say 100 vs. 2.

• Lossless compression is essential in applications
such as text file compression.such as text file compression.

• Lossy compression is acceptable in many
imaging applications.

� In video transmission, a slight loss in the transmitted

video is not noticed by the human eye.

Text Compression

• Lossless compression is essential.

• Popular text compressors such as zip
and Unix’s compress are based on the and Unix’s compress are based on the
LZW (Lempel-Ziv-Welch) method.

LZW Compression

• Character sequences in the original text
are replaced by codes that are
dynamically determined.

• The code table is not encoded into the
compressed text, because it may be
reconstructed from the compressed text
during decompression.

LZW Compression

• Assume the letters in the text are limited to
{a, b}.
� In practice, the alphabet may be the 256

character ASCII set.

• The characters in the alphabet are assigned
code numbers beginning at 0.

• The characters in the alphabet are assigned
code numbers beginning at 0.

• The initial code table is:

code

key

0

a

1

b

LZW Compression

• Original text = abababbabaabbabbaabba

• Compression is done by scanning the original
text from left to right.

code

key

0

a

1

b

text from left to right.

• Find longest prefix p for which there is a code
in the code table.

• Represent p by its code pCode and assign the
next available code number to pc, where c is
the next character in the text that is to be
compressed.

LZW Compression

• Original text = abababbabaabbabbaabba

• p = a

code

key

0

a

1

b

2

ab

• pCode = 0

• c = b

• Represent a by 0 and enter ab into the code
table.

• Compressed text = 0

LZW Compression

• Original text = abababbabaabbabbaabba

• Compressed text = 0

code

key

0

a

1

b

2

ab

3

ba

• p = b• p = b

• pCode = 1

• c = a

• Represent b by 1 and enter ba into the
code table.

• Compressed text = 01

LZW Compression

• Original text = abababbabaabbabbaabba

• Compressed text = 01

code

key

0

a

1

b

2

ab

3

ba

• p = ab

4

aba

• p = ab

• pCode = 2

• c = a

• Represent ab by 2 and enter aba into the
code table.

• Compressed text = 012

LZW Compression

• Original text = abababbabaabbabbaabba

• Compressed text = 012

code

key

0

a

1

b

2

ab

3

ba

• p = ab

4

aba

5

abb

• p = ab

• pCode = 2

• c = b

• Represent ab by 2 and enter abb into the
code table.

• Compressed text = 0122

LZW Compression

• Original text = abababbabaabbabbaabba

• Compressed text = 0122

code

key

0

a

1

b

2

ab

3

ba

• p = ba

4

aba

5

abb

6

bab

• p = ba

• pCode = 3

• c = b

• Represent ba by 3 and enter bab into the
code table.

• Compressed text = 01223

LZW Compression

• Original text = abababbabaabbabbaabba

• Compressed text = 01223

code

key

0

a

1

b

2

ab

3

ba

• p = ba

4

aba

5

abb

6

bab

7

baa

• p = ba

• pCode = 3

• c = a

• Represent ba by 3 and enter baa into the
code table.

• Compressed text = 012233

LZW Compression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233

code

key

0

a

1

b

2

ab

3

ba

• p = abb

4

aba

5

abb

6

bab

7

baa

8

abba

• p = abb

• pCode = 5

• c = a

• Represent abb by 5 and enter abba into the
code table.

• Compressed text = 0122335

LZW Compression

• Original text = abababbabaabbabbaabba

• Compressed text = 0122335

code

key

0

a

1

b

2

ab

3

ba

• p = abba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

• p = abba

• pCode = 8

• c = a

• Represent abba by 8 and enter abbaa into the
code table.

• Compressed text = 01223358

LZW Compression

• Original text = abababbabaabbabbaabba

• Compressed text = 01223358

code

key

0

a

1

b

2

ab

3

ba

• p = abba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

• p = abba

• pCode = 8

• c = null

• Represent abba by 8.

• Compressed text = 012233588

Code Table Representation

• Dictionary.

� Pairs are (key, element) = (key,code).

� Operations are : get(key) and put(key, code)

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

� Operations are : get(key) and put(key, code)

• Limit number of codes to 212.

• Use a hash table.

� Convert variable length keys into fixed length keys.

� Each key has the form pc, where the string p is a key
that is already in the table.

� Replace pc with (pCode)c.

Code Table Representation

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

code 0 1 2 3 4 5 6 7 8 9code

key

0

a

1

b

2

0b

3

1a

4

2a

5

2b

6

3b

7

3a

8

5a

9

8a

Implementation of LZW algorithm

void Compress()
{// Lempel-Ziv-Welch compressor.

ChainHashTable<element, long> h(D);
element e;
for (int i = 0; i < alpha; i++) {// initialize

e.key = i;
e.code = i;
h.Insert(e);h.Insert(e);

}
int used = alpha; // codes used

// input and compress
unsigned char c;
in.get(c);
long pcode = c; // prefix code

Implementation of LZW algorithm
if (!in.eof()) {// file length is > 1

do {// process rest of file
in.get(c);
if (in.eof()) break; // finished
long k = (pcode << ByteSize) + c;
// see if code for k in dictionary
if (h.Search(k, e)) pcode = e.code; // yes
else {// k not in table

output(pcode);
if (used < codes) // create new codeif (used < codes) // create new code
{e.code = used++;
e.key = (pcode << ByteSize) | c;
h.Insert(e);}
pcode = c;}

} while (true);
output(pcode);
if (status) {c = LeftOver << excess;

out.put(c);}
}

out.close(); in.close();
}

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• Convert codes to text from left to right.

code

key

0

a

1

b

• Convert codes to text from left to right.

• 0 represents a.

• Decompressed text = a

• pCode = 0 and p = a.

• p = a followed by next text character (c) is entered
into the code table.

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• 1 represents b.

code

key

0

a

1

b

2

ab

• 1 represents b.

• Decompressed text = ab

• pCode = 1 and p = b.

• lastP = a followed by first character of p is entered into
the code table.

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• 2 represents ab.

code

key

0

a

1

b

2

ab

3

ba

• 2 represents ab.

• Decompressed text = abab

• pCode = 2 and p = ab.

• lastP = b followed by first character of p is entered
into the code table.

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• 2 represents ab

code

key

0

a

1

b

2

ab

3

ba

4

aba

• 2 represents ab

• Decompressed text = ababab.

• pCode = 2 and p = ab.

• lastP = ab followed by first character of p is entered
into the code table.

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• 3 represents ba

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

• 3 represents ba

• Decompressed text = abababba.

• pCode = 3 and p = ba.

• lastP = ab followed by first character of p is entered into
the code table.

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• 3 represents ba

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

• 3 represents ba

• Decompressed text = abababbaba.

• pCode = 3 and p = ba.

• lastP = ba followed by first character of p is entered
into the code table.

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• 5 represents abb

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

• 5 represents abb

• Decompressed text = abababbabaabb.

• pCode = 5 and p = abb.

• lastP = ba followed by first character of p is entered
into the code table.

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• 8 represents ???

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

• 8 represents ???

• When a code is not in the table, its key is lastP
followed by first character of lastP.

• lastP = abb

• So 8 represents abba.

LZW Decompression

• Original text = abababbabaabbabbaabba

• Compressed text = 012233588

• 8 represents abba

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

• 8 represents abba

• Decompressed text = abababbabaabbabbaabba.

• pCode = 8 and p = abba.

• lastP = abba followed by first character of p is
entered into the code table.

Code Table Representation

• Dictionary.

� Pairs are (key, element) = (code, what the code
represents) = (code, codeKey).

� Operations are : get(key) and put(key, code)

code

key

0

a

1

b

2

ab

3

ba

4

aba

5

abb

6

bab

7

baa

8

abba

9

abbaa

� Operations are : get(key) and put(key, code)

• Keys are integers 0, 1, 2, …

• Use a 1D array codeTable.

� codeTable[code] = codeKey.

� Each code key has the form pc, where the string p is
a code key that is already in the table.

� Replace pc with (pCode)c.

Time Complexity

• Compression.

� O(n) expected time, where n is the length
of the text that is being compressed.

• Decompression.• Decompression.

� O(n) time, where n is the length of the
decompressed text.

