CS 315 Data Structures Mid-term # 1Solutions

(Date and time: October 9, 10:45 to 12)

Closed-book section

1) What is the exact number of key comparisons performed by insertion sorting on the following input?

12 10 7 4 19 8 5 1

 Answer: 24

2) The figure below shows a linked list. Write a single statement to delete the node next to the node pointed to by p. p

 key next

 o o o

 Given: node we want to delete exists.

 Answer: p->next = p->next->next;

3) Sum the series 200 + 198 + 196 + ... to 75 terms

 Answer: 126 x 75 = 9450

4) Convert the following expression to the postfix: (((a + b)* c + d)* f)* g + h

 Answer: a b + c * d + f * g * h +

 5) We need to write our own destructor (instead of using the default one) when:

 (a) there are private data members that are pointers.

 (b) there are private data members that are arrays.

 (c) dynamic memory allocation has been used to allocate nodes from the heap

 (d) garbage collection is not supported by the language

 (e) in each of the above cases

 Circle all the correct answers.

 6) A linked list implementation of a stack is better than an array implementation of a stack in the following ways:

 (a) uses fewer instructions to implement insert and delete

 (b) uses less memory to implement insert and delete

(c) avoids the overhead associated with resizing

 Choose the correct answer:

 (1) (a) and (b) (2) (a) and (c) (3) (a) only (4) (c) only (5) none of the above

 7) What is the significance of a static variable in c++?

 static variables are variables in a function that retain their value between calls.

8) The following function computes the sum n + (n+1) + ... + (n + k – 1), with one boolean expression missing. Write the missing expression in the space provided:

 int f (int n, int k) {

 if (k == 1) return n;

 else return n + f(n+1, k – 1);
 }

CS 315 Data Structures Fall 2008

Open-book section

1) What is the number of times the underlined statement is performed by the following function when a call to f(85) is made ? Also estimate the number of times the underlined statement is performed as a function of n and express your result using O notation.

 int f (int n) {

 int x = 0;

 for (int j = 0; j < n; ++j)

 for (int k = j+1; k < n; ++k)

 if (j+k % 2 == 0)

 x = x + j * k;

 return x;

 }

n = 85: for j = 0, the inner loop will perform the instruction for k = 2, 4, ..., 84 i.e., 42 times. for j = 1, it will perform 0 times. When j = 2, the inner loop perform 41 times etc.

Thus the total number is given by (42 + 41 + 40 + ... + 1) = 42 x 43/2 = 903

More generally, the number of times the instruction is executed is (n/2 + ... + 1) = 1/2 *n/2 (n/2 + 1) = n(n+2)/8 = O(n2).

2) Assume a standard list class shown below:

 class list {

 private:

 Node* first;

 public class Node {

 int key; Node* next;

 // functions for the Node class

 }

 // functions for the list class

 }

 For the list class, write a recursive function to delete the last node of a list. The deleted node should be returned by the function.

Node* deleteLast() {

Node* temp();

if (head == null) return temp;

if (head → next == null) {

 temp = head; head = null;

 return temp;}

else
 {

 List n = new List(head-> next);

 temp = n.deleteLast();

 return temp;
 }

}

3) For a standard singly-linked list class, write a function reverse to reverse a list, using only the following operations: size(), first(), remove(int) and insertFirst(object).The function remove(k) removes the object in position k of the list. What is the complexity of your algorithm (as a function of n = size of the list).

void reverse(int k) {

 for (int j = 2; j < size(); ++j) {

 int x = remove(j);

 insertFirst(x);

 }

}

The time complexity for the j-th iteration of the loop is c + j for a constant c, so the total is

c(n – 1) + n(n – 1) / 2 = O(n2)

4) Show step by step the content of the stack and the output when the algorithm presented in class for converting an infix expression to postfix expression is run on the input

 (2 + 8) * 2 + (11 + 4 * 5) * 8

Stack: (Out: Stack + (+ * Out: 2 8 + 2 * 11 4

 (Out: 2 + (+ * Out: 2 8 + 2 * 11 4 5

 (+ 2 8 + (+ Out: 2 8 + 2 * 11 4 *

 (2 8 + + (Out: 2 8 + 2 * 11 4 * +

 2 8 + + Out: 2 8 + 2 * 11 4 * +

 * 2 8 + + * Out: 2 8 + 2 * 11 4 * +

 * 2 8 + 2 + * Out: 2 8 + 2 * 11 4 * + 8

 2 8 + 2 * + Out: 2 8 + 2 * 11 4 * + 8 *

 + 2 8 + 2 * Out: 2 8 + 2 * 11 4 * + 8 * +

 + (2 8 + 2 *

 + (2 8 + 2 * 11

 + (+ 2 8 + 2 * 11 4

